Nonmaximal weak-*Dirichlet algebras

By Takahiko Nakazi

(Received April 14, 1975)

0. Introduction

Let A be a weak-*Dirichlet algebra of $L^\infty(m)$ which was introduced by Srinivasan and Wang [7]. Let $H^\infty(m)$ denote the weak-*closure of A in $L^\infty(m)$. Suppose there exists at least one positive nonconstant function ν in $L^1(m)$ such that the measure νdm is multiplicative on A. Then Merrill [4] characterizes the classical space $H^\infty(d\theta)$ by invariant subspaces of $H^\infty(m)$ or the maximality of $H^\infty(m)$ as a weak-*closed subalgebra of $L^\infty(m)$. In section 1 we characterize $H^\infty(d\theta d\phi)$, which is certain weak-* Dirichlet algebra on the torus, by invariant subspaces of $H^\infty(m)$. We need not assume the existence of the above ν. Then, in some special case, Muhly [6] shows that $H^\infty(m)$ is a maximal weak-*closed subalgebra of $L^\infty(m)$. But in general, $H^\infty(m)$ is not maximal and so there exist weak-* closed subalgebras of $L^\infty(m)$ which contain $H^\infty(m)$ properly. In section 2 we construct some typical subalgebra in such subalgebras and we determine forms of all weak-*closed subalgebras which contain this subalgebra. This is applied to determine forms of all subalgebras which contain $H^\infty(d\theta d\phi)$.

Recall that by definition a weak-*Dirichlet algebra is an algebra A of essentially bounded measurable functions on a probability measure space (X, \mathcal{M}, m) such that (i) the constant functions lie in A; (ii) $A + \overline{A}$ is weak-*dense in $L^\infty(m)$ (the bar denotes conjugation, here and always); (iii) for all f and g in A, $\int f g dm = (\int f dm)(\int g dm)$. The abstract Hardy spaces $H^p(m)$, $1 \leq p \leq \infty$, associated with A are defined as follows. For $1 \leq p < \infty$, $H^p(m)$ is the $L^p(m)$-closure of A, while $H^\infty(m)$ is defined to the weak-*closure of A in $L^\infty(m)$. For $1 \leq p \leq \infty$, $H^p_0 = \{f \in H^p(m) : \int f dm = 0\}$. For any subset $M \subseteq L^\infty(m)$, denote by $[M]_2$ the $L^2(m)$-closure of M. A closed subspace M of $L^p(m)$ is called B-invariant if $f \in M$ and $g \in B$ imply that $fg \in M$, where B is a subalgebra of $L^\infty(m)$. In particular, if $B = L^\infty(m)$, M is called doubly-invariant. For any measurable subset E of X, the function χ_E is the characteristic function of E. If $f \in L^p(m)$, write E_f for the support set of f and write χ_f for the characteristic function of E_f.

We use the following result.

(a) If M is a weak-*closed A-invariant subspace of $L^\infty(m)$, then $M=$
Nonmaximal weak-*Dirichlet algebras

For weak-*Dirichlet algebras this has never published, but the proof is easy if we use the logmodularity of $H^\infty(m)$.

1. Characterization of $H^\infty(d\theta d\phi)$

Let A be the algebra of continuous, complex-valued functions on the torus $T^2 = \{(z, w) : |z| = |w| = 1\}$ which are uniform limits of polynomials in $z^n w^m$ where

$$(n, m) \in \Gamma = \{(n, m) : m > 0\} \cup \{(n, 0) : n \geq 0\}.$$

Denoting the normalized Haar measure on T^2 by $d\theta d\phi$, then A is a weak-*Dirichlet algebra of $L^\infty(d\theta d\phi)$. Recall $H^\infty(d\theta d\phi)$ is the weak-*closure of A in $L^\infty(d\theta d\phi)$.

In general, let A be a weak-*Dirichlet algebra of $L^\infty(m)$. Suppose there exists at least one positive nonconstant function v in $L^1(m)$ such that for all f and g in A, $\int f g v \, dm = (\int f \, dm)(\int g v \, dm)$. Then by the logmodularity of $H^\infty(m)$, $H^\infty_0 = ZH^\infty(m)$ for some inner function Z in $H^\infty(m)$, where a function $f \in H^\infty(m)$ is called inner if $|f| = 1$ a.e.

In [4] Merrill obtains the following result for the characterization of the classical space $H^\infty(d\theta)$.

(b) The following properties for $H^\infty(m)$ are equivalent.
(1) $H^\infty(m)$ is isomorphic to the classical space $H^\infty(d\theta)$.
(2) Every nonzero weak-*closed A-invariant subspace of $H^\infty(m)$ has the form

$$M = FH^\infty(m)$$

where F is an inner function in M.

(3) $H^\infty(m)$ is a maximal weak-*closed subalgebra of $L^\infty(m)$.

In this section we characterize $H^\infty(d\theta d\phi)$ which is not a maximal weak-*Dirichlet algebra [4]. Let J^∞ be the weak-*closure of $\bigcup_{n=0}^\infty Z^n H^\infty(m)$ and let I^∞ be $\bigcap_{n=0}^\infty Z^n H^\infty_0$.

Theorem 1. (1) J^∞ is the minimum weak-*closed subalgebra of $L^\infty(m)$ which contains $H^\infty(m)$ properly. (2) I^∞ is the maximal weak-*closed ideal of J^∞ in $H^\infty(m)$.

Proof. First, we shall show that if B is a weak-*closed subalgebra of $L^\infty(m)$ such that $B \supseteq H^\infty(m)$, then $B \supseteq J^\infty$. If m is multiplicative on B, then \overline{B} is orthogonal to H^∞_0 and hence $B \subseteq H^2(m)$ [7, p 226] and hence $B \subseteq H^2(m) \cap L^\infty(m) = H^\infty(m)$ by (a) in Introduction. This contradicts to
$B \supseteq H^\omega(m)$. If m is not multiplicative on B, the function Z has the inverse in B. For, if not, there exists a complex homomorphism ϕ on B such that $\phi(Z) = 0$. Then $\ker \phi \supseteq H^\omega = ZH^\omega(m)$. If ϕ is restricted to $H^\omega(m)$, then $\ker \phi = H^\omega_0$, so by the logmodularity, the unique representing measure of ϕ is m. This contradicts that m is not multiplicative on B. Thus B is the weak-*closed subalgebra of $L^\omega(m)$ that contains \overline{Z} and $H^\omega(m)$, so $B \supseteq J^\omega$. This proves (1).

Now if K is the weak-*closed ideal of J^ω such that $I^\omega \subseteq K \subseteq H^\omega(m)$, since both Z and \overline{Z} is in J^ω, the subalgebra $K = ZK$. Thus $K \subseteq \bigcap_{n=1}^\infty Z_n H^\omega(m)$ = I^ω. It is known [5] that I^ω is the ideal of J^ω. This proves (2).

Denote by \mathcal{A}^p ($1 \leq p \leq \infty$) the closure in $L^p(m)$ (weak-*closure for $p = \infty$) of polynomials in Z. Denote by \mathcal{H}^p ($1 \leq p \leq \infty$) the closure in $L^p(m)$ (weak-* closure for $p = \infty$) of polynomials in Z and \overline{Z}. Let I^p be the closure of I^ω in $L^p(m)$ and let \mathcal{S}^p be the closure of $I^p + \overline{I}^p$ in $L^p(m)$ and let J^p be the closure of J^ω in $L^p(m)$. The following result is known [4, Lemma 5].

(c) If $1 \leq p \leq \infty$, then

\[H^p(m) = \mathcal{A}^p + I^p, \quad L^p(m) = \mathcal{H}^p + \mathcal{S}^p, \]

\[J^p = \mathcal{S}^p + I^p \]

where $+$ denotes algebraic direct sum and if $p = 2$, each decomposition is orthogonal.

If $1 < p < \infty$, we can show easily that $L^p(m) = J^p + \overline{I}^p$.

The following result is known, too [3].

(d) For $1 \leq p \leq \infty$, there exists an isometric-*isomorphism (i.e., taking complex conjugates into complex conjugates) between $L^p(d\theta)$ of the disc and \mathcal{H}^p in $L^p(m)$, which maps the classical space $H^p(d\theta)$ onto \mathcal{A}^p in $H^p(m)$.

We can prove the following results (e) and (f). The proofs are almost parallel to those of (c) and (d). Suppose there exists a nontrivial inner function W in I^ω. Denote by H^p ($1 \leq p \leq \infty$) the closure in $L^p(m)$ (weak-* closure for $p = \infty$) of polynomials in $Z_n W^m$ where $(n, m) \in \Gamma$. Then H^p is a subspace (subalgebra for $p = \infty$) of $H^\omega(m)$ by $ZI^p = I^p$ which (2) in theorem 1 shows. Denote by L^p ($1 < p < \infty$) the closure in $L^p(dm)$ (weak-* closure for $p = \infty$) of polynomials in Z, \overline{Z}, W and \overline{W}. Let

\[S^p = \{ f \in H^p(m) : \int Z^m W^m f dm = 0, \ (n, m) \in \Gamma \} . \]

Denote by \mathcal{S}^p the closure of $S^p + S^p$ in $L^p(m)$ (weak-*closure for $p = \infty$).

(e) For $1 \leq p \leq \infty$, there exists an isometric-*isomorphism between $L^p(d\theta d\phi)$ of the torus and L^p, which map $H^p(d\theta d\phi)$ onto H^p.

T. Nakazi
Nonmaximal weak*-Dirichlet algebras

(f) If $1 \leq p \leq \infty$, then

$$H^p(dm) = H^p + S^p, \quad L^p(dm) = L^p + S^p$$

where $+$ denotes algebraic direct sum and if $p=2$, each decomposition is orthogonal.

Lemma 1. Suppose $I^\infty = WJ^\infty$ for some inner function W in I^∞. Then S^∞ is a weak-*closed J^∞-invariant subspace of $H^\infty(m)$ such that $S^\infty = WS^\infty$.

Proof. By the above remark (c) and $I^\infty = WJ^\infty$, $P \ominus WP = W\mathcal{L}^2$, where \ominus is orthogonal complement. Denote $S = P \ominus \sum_{f=1}^\infty W^f\mathcal{L}^2$, then $S = \bigcap_{f=1}^\infty W^fP$ and $P = S + \sum_{f=1}^\infty W^f\mathcal{L}^2$. The proof of $WS = S$ is the same as [1, p 109] and S is a J^∞-invariant subspace of $H^2(m)$ by that $S = \bigcap_{f=1}^\infty W^fP$ and P is a J^∞-invariant subspace by (2) of theorem 1. The proof of $S = S^2$ is trivial. By the definition, $S^\infty = S^2 \cap L^\infty(m)$ and hence $S^\infty = WS^\infty$ and S^∞ is a J^∞-invariant subspace.

Theorem 2. The following properties for $H^\infty(m)$ are equivalent.

1. $H^\infty(m)$ is isomorphic to $H^\infty(d\theta d\phi)$.
2. (a) J^∞ has no doubly invariant subspace, (b) every nonzero weak-*closed J^∞-invariant subspace M of $H^\infty(m)$ has the form

$$M = \chi_E F J^\infty$$

where χ_E is a characteristic function in J^∞ and F is a unimodular function.

Proof. (1) \Rightarrow (2). If M is a J^∞-invariant subspace, then $\overline{Z}M \subseteq M$ and so M is a sesqui-invariant subspace [5]. So by [5, p 473], $M = \chi_E F J^\infty$ where χ_E is a characteristic function in \mathcal{L}^∞ and F is a unimodular function. But we can show easily that for any characteristic function χ_E, $\chi_E \in J^\infty$ if and only if $\chi_E \in \mathcal{L}^\infty$. This proves (2). (2) \Rightarrow (1). By the hypothesis of (b) in (2), we can write $I^\infty = \chi_E W J^\infty$, where $\chi_E \in J^\infty$ and W is a unimodular function. If $m(E) < 1$, by the remark (c), J^∞ must have some doubly invariant subspace. So we can write $I^\infty = WJ^\infty$ with W in I^∞. For this inner function W, S^∞ is a weak-*closed J^∞-invariant subspace of $H^\infty(m)$ and $S^\infty = WS^\infty$ by [Lemma 1]. If $S^\infty \neq \{0\}$, by the hypothesis of (b) in (2), we can write $S^\infty = \chi_E F J^\infty$ where $\chi_E \in J^\infty$ and F is a unimodular function. By that $\chi_E F \in \chi_E F J^\infty$ and $\overline{WS}^\infty = S^\infty$, the function $\chi_E F \overline{W}$ is in $\chi_E F J^\infty$ and hence there exists some function g in J^∞ such that $\chi_E = \chi_E W g$. From $W \in I^\infty$, it follows that $\chi_E W g \in I^\infty$ and hence $\chi_E \in I^\infty$. This shows that $\chi_E = 0$ by $\chi_E \in J^\infty$ and hence $S^\infty = \{0\}$. By the remark (f), $H^\infty(m) = H^\infty$ and by the remark (e), this proves (1).
$H^\infty(d\theta d\phi)$ is not maximal as a weak-*closed subalgebra of $L^\infty(d\theta d\phi)$. So it is impossible to characterize $H^\infty(d\theta d\phi)$ by the maximality. One question that arises is: is it possible to characterize $H^\infty(d\theta d\phi)$ by subalgebras of $L^\infty(m)$ which contain it? In the next section we shall answer this.

2. Subalgebras which contain $H^\infty(m)$

Let A be a weak-*Dirichlet algebra of $L^\infty(m)$. We need not always the assumption such that there exists a positive nonconstant function v in $L^1(m)$ such that the measure vdm is multiplicative on A. Muhly [6] show that $H^\infty(m)$ is a maximal weak-*closed subalgebra of $L^\infty(m)$ if and only if no nonzero function in $H^\infty(m)$ can vanish on a set of positive measure. If V is a weak-*closed subalgebra which is generated by $H^\infty(m)$ and χ_f for all $f \in H^\infty(m)$, then the subalgebra V contains $H^\infty(m)$ and $\chi_f \in V$ for every $f \in H^\infty(m)$. We determine forms of all subalgebras which contain V.

THEOREM 3. Let V be a weak-*closed subalgebra of $L^\infty(m)$ which contains $H^\infty(m)$. The following are equivalent.

1. $\chi_f \in V$ for every $f \in V$.
2. $\chi_f \in V$ for every $f \in H^\infty(m)$.
3. Each weak-*closed subalgebra B of $L^\infty(m)$ that contains V has the form

$$B = \chi_E V + \chi_E^* L^\infty(m)$$

for some $\chi_E \in V$.

Proof. (1) \Rightarrow (2) trivial.

(2) \Rightarrow (3). Let K be an orthogonal complement of B in $L^2(m)$. We may assume $K \neq \{0\}$. Let E be the support set of K, then $\chi_E \in V$. For since B contains $H^\infty(m)$, the set $K \subseteq \overline{H}_0^2$ [7, p 226]. For each f in $H^2(m)$, there exists a function g in $H^\infty(m)$ such that $\chi_f = \chi_g$ [6]. So if f in K, then $\chi_f = \chi_g \in V$ by the hypothesis of (2). If f and g in K, let $F = E_f \setminus E_g$, then $\chi_F \in V$. Since $\chi_F B \subseteq B$, we can show $\chi_F K \subseteq K$ and hence $h = g + \chi_f f$ is in K. So if $f, g \in K$, there exists $h \in K$ with $E_h = E_f \cup E_g$. This shows that there exists a function f in K such that $E_f = E$ and hence $\chi_E \in V$. Since $\chi_E K = \{0\}$ and $\chi_E \in V$, we can get $B \supseteq \chi_E V + \chi_E^* L^\infty(m)$ and $\chi_E V + \chi_E^* L^\infty(m)$ is a weak-*closed subalgebra.

We shall show $B = \chi_E V + \chi_E^* L^\infty(m)$. Suppose $B \neq \chi_E V + \chi_E^* L^\infty(m)$. Just as Muhly [6], there exists a nonconstant unimodular function q and \bar{q} in B such that $\bar{q} \notin \chi_E V + \chi_E^* L^\infty(m)$. Then $\chi_E \bar{q} \notin \chi_E V$. Let N be the weak-*
closure of polynomials of \(q, \bar{q} \) and all characteristic functions in \(V \). Then \(N \) is a commutative von Neumann algebra as an algebra of operators on \(L^2(m) \). By \(\chi_E \bar{q} \notin V \), \(V \) can not contain the whole \(\chi_E N \). There exists \(\chi_{E_0} \) in \(N \) such that \(\chi_{E_0} \cap E \neq 0 \) and for any nonzero \(\chi_f \) in \(V \)

\[
\chi_{E_0} \cap E \chi_f \neq \chi_f.
\]

For suppose there exists a nonzero \(\chi_f \) in \(V \) such that \(\chi_{H \cap E} \chi_f = \chi_f \) for any \(\chi_H \) in \(N \) such that \(\chi_{H \cap E} \neq 0 \). Then \(H \cap E \supset F \) for the nonzero \(\chi_f \) in \(V \). If \(H \cap E \neq F \), since \(\chi_H \chi_{V} \notin N \) and \(\chi_H \chi_f \neq 0 \), there exists a nonzero \(\chi_f \) in \(V \) such that \(H \cap F^c \cap E \supset F' \) arguing as above. This leads to that \(\chi_{H \cap E} \notin V \) for any \(\chi_H \) in \(N \), i.e., \(\chi_E N \subseteq V \) by that \(N \) is a commutative von Neuman algebra. This contradiction shows that there exists such a \(\chi_{E_0} \) in \(N \). By \(\chi_{E_0} \in B \), it follows that \(\chi_{E_0} K \subseteq K \). If \(\chi_{E_0} K \neq \{0\} \), we can show that there exists some nonzero \(\chi_{E_0} \) in \(V \) such that \(\chi_{E_0} \chi_{F_0} = \chi_f \). \(\chi_{E_0} K = \{0\} \). Since \(m(E_0 \cap E) \geq 0 \), this contradicts that \(E \) is the support set of \(K \). Thus \(B = \chi_E V + \chi_{E_0} L^\infty(m) \).

(3) \(\Rightarrow \) (1). Suppose \(f \) in any function in \(V \). We can assume that \(0 < \chi_f < 1 \). Let \(D = D(f) \) be the weak*-closure of \(\{fg : g \in V\} \), then \(D \subseteq V \) and the support set of \(D \) coincides with the support set of \(f \). Let \(B = \{v \in L^\infty(m) : vD \subseteq D\} \). Then \(V \subseteq B \). From the hypothesis of (3), we can write \(B = \chi_E V + \chi_{E_0} L^\infty(m) \) for some \(\chi_E \in V \). Then we can choose \(\chi_E \) in \(V \) such that \(\chi_E \chi_E V \) has no doubly invariant subspace. If \(m(E) = 0 \), then \(B = L^\infty(m) \) which means that \(D \) is doubly-invariant and hence \(\chi_f L^\infty(m) \subseteq V \). So \(\chi_f \in V \). Suppose \(m(E) > 0 \). Since \((1 - \chi_f) L^\infty(m) \subseteq B \) and \(\chi_{E_0} L^\infty(m) \) is the maximum doubly-invariant subspace of \(B \), we have \(E = E \) for \(E' \) or \(E = E \). If \(E' \neq E \), define \(g = \chi_{E_0} f \), then the function \(g \) is in \(V \) and \(g \neq 0 \). Arguing as above, there exist a nonzero \(\chi_f \) in \(V \) such that \(E \cap E' \supset F \). This shows that \(\chi_f \in V \).

Corollary 1. (Muhly [6]) The following properties for \(H^\infty(m) \) are equivalent.

1. No nonzero function in \(H^\infty(m) \) can vanish on a set of positive measure.
2. \(H^\infty(m) \) is a maximal weak*-closed subalgebra of \(L^\infty(m) \).

Proof. (1) \(\Rightarrow \) (2). If \(f \) is any function in \(H^\infty(m) \), then \(\chi_f \equiv 0 \) or \(\chi_f \equiv 1 \) and hence \(\chi_f \in H^\infty(m) \). Apply theorem 3 with \(V = H^\infty(m) \). (2) \(\Rightarrow \) (1). The condition (3) in theorem 3 is satisfied with \(V = H^\infty(m) \) because of the maximality of \(H^\infty(m) \). Therefore \(\chi_f \in H^\infty(m) \) for every \(f \in H^\infty(m) \). But the only real valued functions in \(H^\infty(m) \) are constants, hence \(\chi_f \equiv 0 \) or \(\chi_f \equiv 1 \). If there exists a positive nonconstant function \(v \) in \(L^1(m) \) such that
the measure \(vdm \) is multiplicative on \(A \), we can choose \(J^\infty \) as \(V \). Here \(J^\infty \) is the minimum weak-*closed subalgebra of \(L^\infty(m) \) which contains \(H^\infty(m) \) properly.

Theorem 4. The following properties for \(H^\infty(m) \) are equivalent.

1. \(\chi_f \in J^\infty \) for every \(f \in H^\infty(m) \).
2. Each weak-*closed subalgebra \(B \) of \(L^\infty(m) \) that contains \(H^\infty(m) \) properly has the form
 \[
 B = \chi_E J^\infty + \chi_E^c L^\infty(m)
 \]
 for some \(\chi_E \in J^\infty \).

Proof. If \(B \supsetneq H^\infty(m) \), then \(B \supseteq J^\infty \) since \(J^\infty \) is the minimum weak-*closed subalgebra. So by theorem 3, we can get this theorem.

In section 3 we shall show that \(\chi_f \in J^\infty \) for every \(f \in H^\infty(d\theta d\phi) \), i.e. this algebra satisfies the condition (1) of theorem 4. Moreover we shall give an example (2) such that \(H^\infty(m) \) satisfies the condition (1) of theorem 4 and it is not isomorphic to \(H^\infty(d\theta d\phi) \). Now we can get the negative answer to the question raised at the end of section 1. For \(H^\infty(m) \) in example (2) and \(H^\infty(d\theta d\phi) \) have same subalgebras in the form which contain them by theorem 4.

Corollary 2. Suppose \(J^\infty \neq L^\infty(m) \) and \(\chi_f \in J^\infty \) for every \(f \) in \(H^\infty(m) \). Then there is no algebra which contains \(H^\infty(m) \) and is maximal among the proper weak-*closed subalgebras of \(L^\infty(m) \).

Proof. Suppose \(B \) is a maximal weak-*closed subalgebra of \(L^\infty(m) \) such that \(H^\infty(m) \supseteq B \supsetneq L^\infty(m) \). By theorem 4 we can write \(B = \chi_E J^\infty + \chi_E^c L^\infty(m) \) for some \(E \) such that \(m(E) > 0 \) and \(\chi_E \in J^\infty \). Then we can choose \(\chi_E \) such that \(\chi_E J^\infty \) has no doubly invariant subspace. But \(\chi_E \in J^\infty \) if and only if \(\chi_E \in \mathcal{L}^\infty \). By the remark (d) in section 1 \(\mathcal{L}^\infty \) is isomorphic to \(L^\infty(d\theta) \) of the disc. If \(F \) in \(L^\infty(d\theta) \) corresponds to \(f \in \mathcal{L}^\infty \), then \(f(x) = F(Z(x)) \) a.e. \([5, \text{Lemma } 4] \). Hence there is a measurable set \(E' \) such that \(E' \subseteq E \) and \(m(E) \neq m(E') > 0 \) and \(\chi_{E'} \in \mathcal{L}^\infty \). If \(B' = \chi_{E'} J^\infty + \chi_{E'}^c L^\infty(m) \), then \(L^\infty(m) \supsetneq [B']_2 \supsetneq [B]_2 \) by that \(\chi_{E'} J^\infty \) has no doubly invariant subspace and hence \(B \subseteq B' \supsetneq L^\infty(m) \).

Corollary 3. Suppose \(\chi_f \in J^\infty \) for every \(f \) in \(H^\infty(m) \). If \(B \) is a weak-*closed subalgebra of \(L^\infty(m) \) which contains \(H^\infty(m) \) and a function \(v \) such that \(\chi_E v \in J^\infty \) for any nonzero \(\chi_E \in J^\infty \), then \(B = L^\infty(m) \).

Proof. By theorem 4, we can write \(B = \chi_E J^\infty + \chi_E^c L^\infty(m) \) for some \(\chi_E \in J^\infty \). Since \(B \) contains \(v \), \(\chi_E v \in \chi_E J^\infty \subseteq J^\infty \). If \(m(E) > 0 \), then \(\chi_E v \notin J^\infty \) by assumption. This implies \(m(E) = 0 \), hence \(B = L^\infty(m) \).
3. Example

(1) Let \(A \) be the weak-*Dirichlet algebra on the torus which was raised at the first of section 1. Then there exist positive nonconstant functions in \(L^{1}(d\theta d\phi) \) which are multiplicative on \(A \). \(H_{0}^{\infty}(d\theta d\phi) = zH^{\infty}(d\theta d\phi) \) and \(J^{\infty} \) is the weak-*closure of \(\bigcup_{n=0}^{\infty} z^{n}H^{\infty}(d\theta d\phi) \). Then \(\chi_{f} \in J^{\infty} \) for every \(f = f(z, w) \in H^{\infty}(d\theta d\phi) \). In fact, there exist polynomials \(p_{n}(w) \) such that for almost all points \(z_{0} \) in \(T \), as \(n \to \infty \)

\[
\int_{T} |f(z_{0}, w) - p_{n}(w)|^{2} d\phi \to 0.
\]

Then it follows that \(f(z_{0}, w) = 0 \) a.e. \(d\phi \) or \(|f(z_{0}, w)| > 0 \) a.e. \(d\phi \). Let \(E_{1} = \{z_{0} \in T : |f(z_{0}, w)| > 0 \text{ a.e. } d\phi\} \). Then the set \(E_{1} \times T \) is a support set of \(f \). For every \((n, m)\) with \(m > 0 \)

\[
\int_{E_{1}} d\theta \int_{T} z^{n}w^{m} d\phi = 0.
\]

Hence \(\chi_{f} = \chi_{E_{1} \times T} \in J^{\infty} \) by that \(L^{2}(d\theta d\phi) = J^{2} + I^{2} \) and the remark (a) in Introduction. Thus by theorem 4, each weak-*closed subalgebra \(B \) of \(L^{\infty}(d\theta d\phi) \) that contains \(H^{\infty}(d\theta d\phi) \) properly has the form \(B = \chi_{E_{1} \times T} J^{\infty} + \chi_{E_{1} \times T} L^{\infty}(d\theta d\phi) \) where \(E_{1} \) is some measurable set of \(T \) and \(F_{1} = T \setminus E_{1} \). It is known [2] that there exists a maximal uniform closed subalgebra of \(C(T^{2}) \) the set of all complex-valued continuous functions on \(T^{2} \), which contains \(A \). But by corollary 2, there is no algebra which contains \(H^{\infty}(d\theta d\phi) \) and is maximal among the proper weak-*closed subalgebras of \(L^{\infty}(d\theta d\phi) \). Moreover as \(v \) in corollary 3, we can take \(u\overline{w}^{r} \) (\(r \) is a positive real number and \(u \in L^{\infty} \) and \(|u| > 0 \)), \(\chi_{E}(E = T \times E_{2}, d\phi(E_{2}) < 1) \), etc.

(2) Let \(K \) be the Bohr compactification of the real line. Let \(A \) be the algebra of continuous, complex-valued functions on \(T \times K \) which are uniform limits of polynomials in \(z^{n}\chi_{r} \), where

\[
(n, \tau) \in \Gamma = \{(n, \tau) : \tau > 0\} \cup \{(n, 0) : n \geq 0\}
\]

and denote by \(\chi_{r} \) the characters on \(K \), where \(\tau \) in the real line. Denote by \(m \) the normalized Haar measure on \(T \times K \), then \(A \) is the weak-*Dirichlet algebra of \(L^{\infty}(m) \) [5]. There exist positive nonconstant functions in \(L^{1}(m) \) which are multiplicative on \(A \). \(H_{0}^{\infty} = zH^{\infty}(m) \) and \(J^{\infty} \) is the weak-*closure of \(\bigcup_{n=0}^{\infty} z^{n}H^{\infty}(m) \). We can show that \(\chi_{f} \in J^{\infty} \) for every \(f \in H^{\infty}(m) \) as in (1).
Let A be the algebra of continuous, complex-valued functions on $K \times K$ which are uniform limits of polynomials is $\chi_{\tau_{1}} \chi_{\tau_{2}}$, where

$$(\tau_{1}, \tau_{2}) \in \Gamma = \{(\tau_{1}, \tau_{2}) : \tau_{2} > 0\} \cup \{(\tau_{1}, 0) : \tau_{1} \geq 0\}$$

and denote by $\chi_{\tau_{i}}$ the characters on K, where τ_{i} in the real line. Denote by m the normalized Haar measure on $K \times K$, then A is the weak-* Dirichlet algebra of $L^{\infty}(m)$. Then there exist no positive nonconstant functions in $L^{1}(m)$ which are multiplicative on A. Let V be the weak-* closure of $\bigcup \overline{\chi_{\tau_{i}}}H^{\infty}(m)$, then $H^{\infty}(m) \subset V \subsetneq L^{\infty}(m)$ and V is a weak-*closed subalgebra. We can show that $\chi_{f} \in V$ for every $f \in H^{\infty}(m)$ as in (1). By theorem 3, we can know the form of weak-*closed subalgebras of $L^{\infty}(m)$ which contains V properly.

References

T. Nakazi
Research Institute of Applied Electricity
Hokkaido University
Sapporo, Japan