On the annihilators of formal local cohomology modules

Shahram REZAEI

(Received November 12, 2016; Revised April 22, 2017)

Abstract. Let a denote an ideal in a commutative Noetherian local ring (R, \mathfrak{m}) and M a non-zero finitely generated R-module of dimension d. Let $d := \dim(M/aM)$. In this paper we calculate the annihilator of the top formal local cohomology module $\mathfrak{H}^d_a(M)$. In fact, we prove that $\text{Ann}_R(\mathfrak{H}^d_a(M)) = \text{Ann}_R(M/U_R(a, M))$, where

$$U_R(a, M) := \cup\{N : N \subseteq M \text{ and } \dim(N/aN) < \dim(M/aM)\}.$$

We give a description of $U_R(a, M)$ and we will show that

$$\text{Ann}_R(\mathfrak{H}^d_a(M)) = \text{Ann}_R(M/G_R(a, M)).$$

where $G_R(a, M)$ denotes the largest submodule of M such that $\text{Ass}_R(M) \cap V(a) \subseteq \text{Ass}_R(M/G_R(a, M))$ and $\text{Ass}_R(M)$ denotes the set $\{p \in \text{Ass}_M : \dim R/p = \dim M\}$.

Key words: attached primes, local cohomology, annihilator.

1. Introduction

Throughout this paper, R is a commutative Noetherian ring with identity, a is an ideal of R and M is a non-zero finitely generated R-module. Recall that the i-th local cohomology module of M with respect to a is defined as

$$H^i_a(M) := \varprojlim_{n \geq 1} \text{Ext}_R^i(R/a^n, M).$$

For basic facts about commutative algebra see [7] and [11]; for local cohomology refer to [6].

2010 Mathematics Subject Classification : 13D45, 13E05.
Let a be an ideal of a commutative Noetherian local ring (R, \mathfrak{m}) and M a non-zero finitely generated R-module. For each $i \geq 0$; $\mathfrak{F}^i_a(M) := \lim_{\rightarrow} H^i_{\mathfrak{m}}(M/a^nM)$ is called the i-th formal local cohomology of M with respect to a. The basic properties of formal local cohomology modules are found in [1], [5], [9], [12] and [14].

In [14] Schenzel investigated the structure of formal local cohomology modules and gave the upper and lower vanishing and non-vanishing to these modules. In particular, he proved that $\text{Sup}\{i \in \mathbb{Z} : \mathfrak{F}^i_a(M) \neq 0\} = \dim(M/\mathfrak{a}M)$. Thus $\mathfrak{F}^{\dim(M)}_a(M) \neq 0$ if and only if $\dim(M/\mathfrak{a}M) = \dim M$ (cf. [14, 4.5]).

For an R-module M and an ideal a, the cohomological dimension of M with respect to a is defined as $\text{cd}(a, M) := \max\{i \in \mathbb{Z} : H^i_a(M) \neq 0\}$. For more details see [8]. For any ideal a of R, the radical of a, denoted by \sqrt{a}, is defined to be the set $\{x \in R : x^n \in a$ for some $n \in \mathbb{N}\}$.

A non-zero R-module M is called secondary if its multiplication map by any element a of R is either surjective or nilpotent. A secondary representation for an R-module M is an expression for M as a finite sum of secondary modules. If such a representation exists, we will say that M is representable. A prime ideal p of R is said to be an attached prime of M if $p = (N :_R M)$ for some submodule N of M. If M admits a reduced secondary representation, $M = S_1 + S_2 + \ldots + S_n$, then the set of attached primes $\text{Att}_R(M)$ of M is equal to $\{\sqrt{0 :_R S_i} : i = 1, \ldots, n\}$ (see [10]).

Recall that $\text{Ass}_R(M)$ denotes the set $\{p \in \text{Ass} M : \dim R/p = \dim M\}$. It is well known that $\text{Att}_R \mathfrak{F}^{\dim M}_a(M) = \{p \in \text{Ass}_R(M) : p \supseteq a\}$ (cf. [5, Theorem 3.1]).

There are many results about annihilators of local cohomology modules. For example see [2], [3] and [4]. The following theorem is a main result of [2] about the annihilators of the top local cohomology modules.

Theorem 1.1 ([2, Theorem 2.3]) Let R be a Noetherian ring and a an ideal of R. Let M be a non-zero finitely generated R-module such that $\text{cd}(a, M) = \dim M$. Then $\text{Ann}_R H^i_a(M) = \text{Ann}_R(M/T_R(a, M))$, where

$$T_R(a, M) := \bigcup\{N : N \leq M \text{ and } \text{cd}(a, N) < \text{cd}(a, M)\}.$$

Note that, for a local ring (R, \mathfrak{m}), we have $\text{cd}(\mathfrak{m}, M) = \dim M$ (cf. [8]). Thus
Annihilators of formal local cohomology modules

\[T_R(m, M) := \cup \{N : N \leq M \text{ and } \dim N < \dim M\}, \]

which is the largest submodule of \(M \) such that \(\dim(T_R(m, M)) < \dim(M) \).

Here, by using the above main result, we obtain some results about annihilators of top formal local cohomology modules. In Section 2, at first we define a new notation \(U_R(a, M) \) and we prove the following Theorem which is a main result of this paper.

Theorem 1.2 Let \(a \) be an ideal of a local ring \((R, m)\) and \(M \) a finitely generated \(R \)-module of dimension \(d \) such that \(\mathfrak{F}_a^d(M) \neq 0 \). Then

\[\text{Ann}_R \mathfrak{F}_a^d(M) = \text{Ann}_R M / U_R(a, M), \]

where \(U_R(a, M) := \cup \{N : N \leq M \text{ and } \dim(N/aN) < \dim(M/aM)\} \).

In Section 3, we obtain the radical of the annihilator of top formal local cohomology module \(\mathfrak{F}_a^{\dim M}(M) \). For this we define notation \(G_R(a, M) \) and we obtain the following main result.

Theorem 1.3 Let \(a \) be an ideal of a local ring \((R, m)\) and \(M \) a finitely generated \(R \)-module of dimension \(d \) such that \(\mathfrak{F}_a^d(M) \neq 0 \). Then

\[\sqrt{\text{Ann}_R \mathfrak{F}_a^d(M)} = \text{Ann}_R M / G_R(a, M), \]

where \(G_R(a, M) \) denotes the largest submodule of \(M \) such that \(\text{Assh}_R(M) \cap V(a) \subseteq \text{Ass}_R(M / G_R(a, M)) \).

2. Annihilators of the top formal local cohomology modules

Let \(a \) be an ideal of a local ring \((R, m)\) and \(M \) a finitely generated \(R \)-module of dimension \(d \) such that \(\dim(M/aM) = d \). In this section, we will calculate the annihilator of the formal local cohomology module \(\mathfrak{F}_a^d(M) \). Note that the assumption \(\dim(M/aM) = d \) implies that \(\mathfrak{F}_a^d(M) \neq 0 \) by (cf. [14, 4.5]).

Definition 2.1 Let \(a \) be an ideal of \(R \) and \(M \) be a non-zero finitely generated \(R \)-module. We denote by \(U_R(a, M) \) the largest submodule of \(M \) such that \(\dim(U_R(a, M)/aU_R(a, M)) < \dim(M/aM) \). One can check that

\[U_R(a, M) := \cup \{N : N \leq M \text{ and } \dim(N/aN) < \dim(M/aM)\}. \]
The following lemma is needed in this section.

Lemma 2.2 Let \((R, \mathfrak{m})\) be a local ring and \(\mathfrak{a}\) an ideal of \(R\). Let \(M\) be a finitely generated \(R\)-module of finite dimension \(d\) such that \(\dim(M/\mathfrak{a}M) = d\). Then

i) \(M/U_R(\mathfrak{a}, M)\) has no non-zero submodule of dimension less than \(d\);

ii) \(\text{Ass}_R(M/U_R(\mathfrak{a}, M)) = \text{Att}_R \mathfrak{F}_\mathfrak{a}^d(M)\);

iii) \(\text{Ass}_R U_R(\mathfrak{a}, M) = \text{Ass}_R M - \text{Att}_R \mathfrak{F}_\mathfrak{a}^d(M)\);

iv) \(\mathfrak{F}_\mathfrak{a}^d(M) \cong \mathfrak{F}_\mathfrak{a}^d(M/U_R(\mathfrak{a}, M)) \cong \mathbb{H}^d_{\mathfrak{m}}(M/U(\mathfrak{a}, M))\).

Proof. Let \(U := U_R(\mathfrak{a}, M)\).

i) Suppose that \(L\) is a submodule of \(M\) such that \(U \subseteq L \subseteq M\) and \(\dim(L/U) < d\). We will show that \(U = L\). By [14, Theorem 1.1] and [14, Theorem 3.11], the short exact sequence

\[
0 \to U \to L \to L/U \to 0
\]

induces an exact sequence

\[
\cdots \to \mathfrak{F}_\mathfrak{a}^d(U) \to \mathfrak{F}_\mathfrak{a}^d(L) \to \mathfrak{F}_\mathfrak{a}^d(L/U) \to 0.
\]

Since \(\dim(L/U) < d\) we have \(\mathfrak{F}_\mathfrak{a}^d(L/U) = 0\). On the other hand, by Definition 2.1 \(\dim(U/aU) < d\) and so \(\mathfrak{F}_\mathfrak{a}^d(U) = 0\). Thus the above long exact sequence implies that \(\mathfrak{F}_\mathfrak{a}^d(L) = 0\). Hence \(\dim(L/aL) < d\). Since \(U \subseteq L\), it follows from the maximality of \(U\) that \(U = L\).

ii) The short exact sequence

\[
0 \to U \to M \to M/U \to 0
\]

induces an exact sequence

\[
\cdots \to \mathfrak{F}_\mathfrak{a}^d(U) \to \mathfrak{F}_\mathfrak{a}^d(M) \to \mathfrak{F}_\mathfrak{a}^d(M/U) \to 0.
\]

Since \(\dim(U/aU) < d\), by definition 2.1 we have \(\mathfrak{F}_\mathfrak{a}^d(U) = 0\). So by using the above long exact sequence we conclude that \(\mathfrak{F}_\mathfrak{a}^d(M) \cong \mathfrak{F}_\mathfrak{a}^d(M/U)\). Therefore \(\text{Att}_R \mathfrak{F}_\mathfrak{a}^d(M) = \text{Att}_R \mathfrak{F}_\mathfrak{a}^d(M/U) \subseteq \text{Ass} M/U\) by [5, Theorem 3.1].

Now we show that \(\text{Ass} M/U \subseteq \text{Att}_R \mathfrak{F}_\mathfrak{a}^d(M) = \text{Att}_R \mathfrak{F}_\mathfrak{a}^d(M/U)\). Note that by (i) \(\dim M/U = d\) and by [5, Theorem 3.1] \(\text{Att}_R \mathfrak{F}_\mathfrak{a}^d(M/U) = \{ \mathfrak{p} \in \mathfrak{P} : \}

\[
\cdots \to \mathfrak{F}_\mathfrak{a}^d(U) \to \mathfrak{F}_\mathfrak{a}^d(M) \to \mathfrak{F}_\mathfrak{a}^d(M/U) \to 0.
\]
Annihilators of formal local cohomology modules

\[\text{Ass}_R M/U : \dim R/\mathfrak{p} = d \text{ and } \mathfrak{p} \supseteq \mathfrak{a} \} \]

If \(\mathfrak{p} \in \text{Ass} M/U \) then there exists a submodule \(K \) of \(M \) such that \(U \subsetneq K \leq M \) and \(R/\mathfrak{p} \simeq K/U \leq M/U \). By (i) \(\dim R/\mathfrak{p} = d \) and so it suffices to show that \(\mathfrak{a} \subseteq \mathfrak{p} \). If not, \(\dim R/(\mathfrak{a} + \mathfrak{p}) < \dim R/\mathfrak{p} = d \). Thus \(\dim((K/U)/\mathfrak{a}(K/U)) = \dim((R/\mathfrak{p})/\mathfrak{a}(R/\mathfrak{p})) = \dim(R/(\mathfrak{a} + \mathfrak{p})) < d \). Hence \(\mathfrak{F}_a^d(K/U) = 0 \). But the exact sequence

\[0 \rightarrow U \rightarrow K \rightarrow K/U \rightarrow 0 \]

induces an exact sequence

\[\cdots \rightarrow \mathfrak{F}_a^d(U) \rightarrow \mathfrak{F}_a^d(K) \rightarrow \mathfrak{F}_a^d(K/U) \rightarrow 0. \]

Since \(\mathfrak{F}_a^d(U) = \mathfrak{F}_a^d(K/U) = 0 \) by the above long exact sequence we have \(\mathfrak{F}_a^d(K) = 0 \). Thus \(\dim(K/\mathfrak{a}K) < d \). But \(U \subsetneq K \) and so from the maximality of \(U \) we get a contradiction. Therefore \(\mathfrak{a} \subseteq \mathfrak{p} \) and the proof is complete.

iii) Let \(\mathfrak{p} \in \text{Ass}_R U \). Then there exists a submodule \(L \) of \(U \) such that \(R/\mathfrak{p} \simeq L \leq U \). Thus

\[\dim R/(\mathfrak{a} + \mathfrak{p}) = \dim((R/\mathfrak{p})/\mathfrak{a}(R/\mathfrak{p})) \leq \dim(U/\mathfrak{a}U) < \dim(M/\mathfrak{a}M) = d. \]

Now, if \(\mathfrak{p} \in \text{Att}_R \mathfrak{F}_a^d(M) \) then \(\mathfrak{a} \subseteq \mathfrak{p} \) and \(\dim R/\mathfrak{p} = d \). Hence \(\dim R/(\mathfrak{a} + \mathfrak{p}) = d \) which is a contradiction. Therefore \(\text{Ass}_R U \subseteq \text{Ass}_R M - \text{Att}_R \mathfrak{F}_a^d(M) \). On the other hand,

\[\text{Ass}_R M - \text{Att}_R \mathfrak{F}_a^d(M) \subseteq \text{Ass}_R M \subseteq \text{Ass}_R U \cup \text{Ass}_R M/U. \]

But by (ii) \(\text{Ass}_R M/U = \text{Att}_R \mathfrak{F}_a^d(M) \). Thus \(\text{Ass}_R M - \text{Att}_R \mathfrak{F}_a^d(M) \subseteq \text{Ass}_R U \). Therefore \(\text{Ass}_R M - \text{Att}_R \mathfrak{F}_a^d(M) = \text{Ass}_R U \).

iv) Since \(\text{Att}_R \mathfrak{F}_a^d(M) \subseteq V(\mathfrak{a}) \), it follows that \(\text{Ass}(M/U) \subseteq V(\mathfrak{a}) \) by (ii). Thus \(\mathfrak{a} \subseteq \cap_{\mathfrak{p} \in \text{Ass}(M/U)} \mathfrak{p} = \sqrt{(0 : (M/U))} \). This yields that \(M/U \) is an \(\mathfrak{a} \)-torsion \(R \)-module. Hence by [5, Lemma 2.1], \(\mathfrak{F}_a^d(M/U) \cong H^d_m(M/U) \). But in the proof of (ii) we saw that \(\mathfrak{F}_a^d(M/U) \cong \mathfrak{F}_a^d(M) \). Therefore \(\mathfrak{F}_a^d(M) \cong H^d_m(M/U) \).

Now we can prove the following main result.

Theorem 2.3 Let \(\mathfrak{a} \) be an ideal of a local ring \((R, \mathfrak{m})\) and \(M \) a finitely generated \(R \)-module of dimension \(d \) such that \(\dim(M/\mathfrak{a}M) = d \). Then
Proof. Let $U := U_R(a, M)$. By Lemma 2.2 (iv), $\mathfrak{F}^d_a(M) \cong H^d_m(M/U)$. Thus $\text{Ann}_R(\mathfrak{F}^d_a(M)) = \text{Ann}_R(H^d_m(M/U))$. But by Theorem 1.1 we have

$$\text{Ann}_R(H^d_m(M/U)) = \text{Ann}_R((M/U)/T_R(m, M/U)).$$

Since $T_R(m, M/U) = 0$ by Lemma 2.2 (i), we conclude that

$$\text{Ann}_R(\mathfrak{F}^d_a(M)) = \text{Ann}_R(H^d_m(M/U)) = \text{Ann}_R M/U_R(a, M),$$

as required. □

Proposition 2.4 Let a be an ideal of a local ring (R, m) and M a finitely generated R-module of dimension d such that $\dim(M/aM) = d$. Then

$$V(\text{Ann}_R \mathfrak{F}^d_a(M)) = \text{Supp}_R(M/U_R(a, M)).$$

Proof. By Theorem 2.3,

$$V(\text{Ann}_R \mathfrak{F}^d_a(M)) = V(\text{Ann}_R M/U_R(a, M)) = \text{Supp}_R(M/U_R(a, M)),$$

as required. □

Theorem 2.5 Let a be an ideal of a complete local ring (R, m) and M a finitely generated R-module of dimension d such that $\dim(M/aM) = d$. Then

$$\text{Att}_R \mathfrak{F}^d_a(M) = \text{Min} \text{Supp}_R(M/U_R(a, M)) = \text{Ass}_R M/U_R(a, M).$$

Proof. By [13, Theorem 2.11 (ii)] $\text{Att}_R \mathfrak{F}^d_a(M) = \text{Min} V(\text{Ann}_R \mathfrak{F}^d_a(M))$.

Now the result follows by Proposition 2.4 and Lemma 2.2 (ii). □

The next Theorem gives us a description of $U_R(a, M)$.

Theorem 2.6 Let a be an ideal of a local ring (R, m) and M a finitely generated R-module of dimension d such that $\dim(M/aM) = d$. Then

$$U_R(a, M) = \bigcap_{p_j \in \text{Ass}_R M \cap V(a)} N_{p_j}.$$
where $0 = \bigcap_{j=1}^{n} N_j$ denotes a reduced primary decomposition of the zero submodule 0 in M and N_j is a p_j-primary submodule of M, for all $j = 1, \ldots, n$.

Proof. Set $N := \cap_{p_j \in \text{Ass}_{R} M \cap V(a)} N_j$. At first we show that $\dim(N/aN) < d$. By [14, Lemma 2.7] $\text{Ass}_{R} M/N = \text{Ass}_{R} M \cap V(a)$ and $\text{Ass}_{R} N = \text{Ass}_{R} M - \text{Ass}_{R} M \cap V(a)$. If $\dim N/aN = d$ then there exists a prime ideal $p \in \text{Supp}_{R} N \cap V(a)$ such that $\dim R/p = d$. Thus $p \in \text{Ass}_{R} M \cap V(a)$ and so $p \notin \text{Ass}_{R} N$. Since $p \in \text{Supp}_{R} N$ and $\dim R/p = d$ we have $p \in \text{Ass}_{R} N$ which is a contradiction. Therefore $\dim(N/aN) < d$ and so $N \subseteq U_{R}(a, M)$ by Definition 2.1.

Now we prove the reverse inclusion. To do this, suppose that there exists $x \in U$ such that $x \notin N$. Thus there exists an integer $t \in \{1, \ldots, n\}$ such that $x \notin N_t$ and $p_t \in \text{Ass}_{R} M \cap V(a)$. On the other hand, there exists an integer k such that $(\sqrt{\text{Ann}_{R} Rx})^k x = 0$. Thus $(\sqrt{\text{Ann}_{R} Rx})^k x \subseteq N_t$. Since $x \notin N_t$ and N_t is a p_t-primary submodule, it follows that $\cap_{p \in \text{Ass}_{R} Rx} p = \sqrt{\text{Ann}_{R} Rx} \subseteq p_t$. Thus there exists a prime ideal $p \in \text{Ass}_{R} Rx \subseteq \text{Ass}_{R} U$ such that $p \subseteq p_t$. Then, as $p \in \text{Ass}_{R} M$ and $\dim R/p_t = \dim M$ it follows that $p = p_t$. Hence $p \in \text{Ass}_{R} M \cap V(a) = \text{Att} \text{\zeta}^{d}_{a}(M)$. Now Lemma 2.2 (iii) implies that $p \notin \text{Ass}_{R} U$ which is a contradiction, because of $p \in \text{Ass}_{R} Rx \subseteq \text{Ass}_{R} U$. This completes the proof. □

Corollary 2.7 Let a be an ideal of a local ring (R, m) and M a finitely generated R-module of dimension d such that $\dim(M/aM) = d$. Then

$$\text{Ann}_{R}(\text{\zeta}^{d}_{a}(M)) = \text{Ann}_{R}(M/ \cap_{p_j \in \text{Ass}_{R} M \cap V(a)} N_j),$$

where $0 = \bigcap_{j=1}^{n} N_j$ denotes a reduced primary decomposition of the zero submodule 0 in M and N_j is a p_j-primary submodule of M, for all $j = 1, \ldots, n$.

Proof. The result follows from Theorems 2.3 and 2.6. □

3. The radical of the annihilators of the top formal local cohomology modules

Let a be an ideal of a local ring (R, m) and M a finitely generated R-module of dimension d such that $\dim(M/aM) = d$. The aim of this section will be to determine the radical of $\text{Ann}_{R}(\text{\zeta}^{d}_{a}(M))$.
Definition 3.1 Let M be a non-zero finitely generated R-module of finite dimension. We denote by $G_R(a, M)$ the largest submodule of M such that $\text{Ass}_R(M) \cap V(a) \subseteq \text{Ass}_R(M/G_R(a, M))$.

Lemma 3.2 Let (R, m) be a local ring and a an ideal of R. Let M be a finitely generated R-module of finite dimension d such that $\dim(M/aM) = d$. Then $\dim(M/G_R(a, M)) = d$.

Proof. Since $\dim(M/aM) = d$ we have $\mathfrak{F}_a^d(M) \neq 0$. Thus $\text{Att}_R(\mathfrak{F}_a^d(M)) = \text{Ass}_R M \cap V(a) \neq \phi$.

Let $p \in \text{Ass}_R M \cap V(a)$. Then $p \in \text{Ass}_R(M/G_R(a, M))$. Thus $\text{Supp}_R(R/p) \subseteq \text{Supp}_R(M/G_R(a, M))$ and so $d = \dim(R/p) \leq \dim(M/G_R(a, M))$. On the other hand, $\dim(M/G_R(a, M)) \leq \dim M = d$. Therefore $d = \dim(M/G_R(a, M))$, as required.

Lemma 3.3 Let a be an ideal of a local ring (R, m) and M a finitely generated R-module of dimension d such that $\dim(M/aM) = d$. Then

$$U_R(a, M/G_R(a, M)) = 0.$$

Proof. Let $G := G_R(a, M)$. It suffices to show that for any non-zero submodule L/G of M/G we have $\dim((L/G)/a(L/G)) = \dim((M/G)/a(M/G))$. It is easy to see that $\text{Ass}_R(M) \cap V(a) \subseteq \text{Ass}_R(M/G) \subseteq \text{Ass}_R L/G \cup \text{Ass}_R M/L$. If $\text{Ass}_R(M) \cap V(a) \subseteq \text{Ass}_R(M/L)$ then since $G \subseteq L$ from the maximality of G we get a contradiction. Thus there exists a prime ideal $p \in \text{Ass}_R(M) \cap V(a)$ such that $p \in \text{Ass}_R L/G$. Hence

$$\dim((R/p)/a(R/p)) \leq \dim((L/G)/a(L/G)) \leq \dim((M/G)/a(M/G))$$

$$\leq \dim(M/aM).$$

Since $p \in \text{Ass}_R M$, $\dim(R/p) = d$. Also, $p \in V(a)$ and so $\dim((R/p)/a(R/p)) = \dim(R/p) = d$. It follows that

$$d \leq \dim((L/G)/a(L/G)) \leq \dim((M/G)/a(M/G)) \leq d.$$

Therefore $\dim((L/G)/a(L/G)) = \dim((M/G)/a(M/G))$, as required.

Lemma 3.4 Let a be an ideal of a local ring (R, m) and M a finitely generated R-module of dimension d such that $\dim(M/aM) = d$. Then
Proof. Let $G := G_R(a, M)$. By definition 3.1 $Assh_R M \cap V(a) \subseteq Ass_R(M/G)$. Thus, by using Lemma 3.2 we conclude that

$$\{ p \in Ass_R M : \dim R/p = \dim M \} \cap V(a)$$

$$\subseteq \{ p \in Ass_R M/G : \dim R/p = \dim M/G \} \cap V(a)$$

and so $Att_R \mathfrak{F}^d_a(M) \subseteq Att_R \mathfrak{F}^d_a(M/G)$. On the other hand, the exact sequence

$$0 \to G \to M \to M/G \to 0$$

induces an exact sequence

$$\cdots \to \mathfrak{F}^d_a(G) \to \mathfrak{F}^d_a(M) \to \mathfrak{F}^d_a(M/G) \to 0.$$

Thus $Att_R(\mathfrak{F}^d_a(M/G)) \subseteq Att_R(\mathfrak{F}^d_a(M))$. Therefore $Att_R \mathfrak{F}^d_a(M) = Att_R \mathfrak{F}^d_a(M/G)$, the proof is complete. \square

Lemma 3.5 Let a be an ideal of a local ring (R, m) and M a finitely generated R-module of dimension d such that $\dim(M/aM) = d$. Then

$$\sqrt{Ann_R(M/G_R(a, M))} = Ann_R(M/G_R(a, M)).$$

Proof. Let $G := G_R(a, M)$. Let $x \in \sqrt{Ann_R(M/G)}$. There exists an integer n such that $x^n M \subseteq G$. Thus Lemma 3.4 implies that

$$Att_R(\mathfrak{F}^d_a(M)) = Att_R(\mathfrak{F}^d_a(M/G)) = Att_R(\mathfrak{F}^d_a(M/(x^n M + G))).$$

Since $Supp_R(M/(x^n M + G)) = Supp_R(M/(xM + G))$ by [5, Corollary 3.2] we have $Att_R(\mathfrak{F}^d_a(M/(x^n M + G))) = Att_R(\mathfrak{F}^d_a(M/(xM + G)))$. Hence

$$Att_R(\mathfrak{F}^d_a(M)) = Att_R(\mathfrak{F}^d_a(M/(xM + G))).$$

But $Att_R(\mathfrak{F}^d_a(M/(xM + G))) \subseteq Ass_R(M/(xM + G))$. Thus

$$Att_R(\mathfrak{F}^d_a(M)) = Assh_R M \cap V(a) \subseteq Ass_R(M/(xM + G)).$$
By definition of G we conclude that $xM + G \subseteq G$. Therefore $xM \subseteq G$ and $x \in \text{Ann}_R(M/G)$, the proof is complete.

The following result is the main result of this section.

Theorem 3.6 Let a be an ideal of a local ring (R, m) and M a finitely generated R-module of dimension d such that $\dim(M/aM) = d$. Then

$$\sqrt{\text{Ann}_R \mathfrak{F}^d_a(M)} = \text{Ann}_R M/G_R(a, M).$$

Proof. Let $G := G_R(a, M)$. By Lemma 3.4 and [6, 7.2.11] we have $\sqrt{\text{Ann}_R \mathfrak{F}^d_a(M)} = \sqrt{\text{Ann}_R \mathfrak{F}^d_a(M/G)}$. But by Lemma 3.2 $\dim(M/G) = d$ and so by Theorem 2.3 and Lemma 3.3,

$$\text{Ann}_R \mathfrak{F}^d_a(M/G) = \text{Ann}_R((M/G)/U_R(a, M/G)) = \text{Ann}_R M/G.$$

Now Lemma 3.5 implies that $\sqrt{\text{Ann}_R \mathfrak{F}^d_a(M/G)} = \sqrt{\text{Ann}_R M/G} = \text{Ann}_R M/G$. Thus $\sqrt{\text{Ann}_R \mathfrak{F}^d_a(M)} = \text{Ann}_R M/G$, as required. \qed

Corollary 3.7 Let a be an ideal of a local ring (R, m) and M a finitely generated R-module of dimension d such that $\dim(M/aM) = \dim M$. Then

$$\cap_{p \in \text{Att}_R(\mathfrak{F}^d_a(M))} p = \text{Ann}_R M/G_R(a, M).$$

Proof. It follows by [6, 7.2.11] and Theorem 3.6. \qed

In the next result, we obtain a necessary and sufficient condition for the equality of the attached prime sets of the two top formal local cohomology modules.

Proposition 3.8 Let (R, m) be a local ring and a an ideal of R. Let M and N be two finitely generated R-modules of dimension d such that $\dim(M/aM) = \dim(N/aN) = d$. Then

$$\text{Att}_R \mathfrak{F}^d_a(M) = \text{Att}_R \mathfrak{F}^d_a(N) \text{ if and only if } \text{Supp}_R(M/G_R(a, M)) = \text{Supp}_R(N/G_R(a, N)).$$

Proof. If $\text{Att}_R \mathfrak{F}^d_a(M) = \text{Att}_R \mathfrak{F}^d_a(N)$ then $\text{Ann}_R M/G_R(a, M) = \text{Ann}_R N/G_R(a, N)$ by Corollary 3.7 and so $V(\text{Ann}_R(M/G_R(a, M))) = V(\text{Ann}_R(N/G_R(a, N)))$. \qed
Annihilators of formal local cohomology modules

Thus \(\text{Supp}_R(M/G_R(a, M)) = \text{Supp}_R(N/G_R(a, N)) \).

Conversely, if \(\text{Supp}_R(M/G_R(a, M)) = \text{Supp}_R(N/G_R(a, N)) \) then by [5, Corollary 3.2] we have \(\text{Att}_R(\tilde{\mathfrak{a}}(M/G_R(a, M))) = \text{Att}_R(\tilde{\mathfrak{a}}(N/G_R(a, N))) \).

Therefore Lemma 3.4 implies that \(\text{Att}_R(\tilde{\mathfrak{a}}(M)) = \text{Att}_R(\tilde{\mathfrak{a}}(N)) \), as required. □

Acknowledgment The author would like to thank the referee for his/her useful suggestions.

References

Shahram Rezaei
Department of Mathematics
Faculty of Science
Payame Noor University
Tehran, Iran
E-mail: Sha.Rezaei@gmail.com